3.2.83 \(\int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx\) [183]

3.2.83.1 Optimal result
3.2.83.2 Mathematica [C] (verified)
3.2.83.3 Rubi [A] (verified)
3.2.83.4 Maple [C] (verified)
3.2.83.5 Fricas [C] (verification not implemented)
3.2.83.6 Sympy [F(-1)]
3.2.83.7 Maxima [F]
3.2.83.8 Giac [F]
3.2.83.9 Mupad [B] (verification not implemented)

3.2.83.1 Optimal result

Integrand size = 23, antiderivative size = 273 \[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {x}{2 b}-\frac {2 a \arctan \left (\frac {\sqrt [3]{b}+\sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^{2/3}-b^{2/3}}}\right )}{3 \sqrt {a^{2/3}-b^{2/3}} b^{5/3} d}+\frac {2 a \text {arctanh}\left (\frac {\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}} b^{5/3} d}+\frac {2 a \text {arctanh}\left (\frac {\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}} b^{5/3} d}-\frac {\cos (c+d x) \sin (c+d x)}{2 b d} \]

output
1/2*x/b-1/2*cos(d*x+c)*sin(d*x+c)/b/d-2/3*a*arctan((b^(1/3)+a^(1/3)*tan(1/ 
2*d*x+1/2*c))/(a^(2/3)-b^(2/3))^(1/2))/b^(5/3)/d/(a^(2/3)-b^(2/3))^(1/2)+2 
/3*a*arctanh((b^(1/3)+(-1)^(2/3)*a^(1/3)*tan(1/2*d*x+1/2*c))/((-1)^(1/3)*a 
^(2/3)+b^(2/3))^(1/2))/b^(5/3)/d/((-1)^(1/3)*a^(2/3)+b^(2/3))^(1/2)+2/3*a* 
arctanh((b^(1/3)-(-1)^(1/3)*a^(1/3)*tan(1/2*d*x+1/2*c))/(-(-1)^(2/3)*a^(2/ 
3)+b^(2/3))^(1/2))/b^(5/3)/d/(-(-1)^(2/3)*a^(2/3)+b^(2/3))^(1/2)
 
3.2.83.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.33 (sec) , antiderivative size = 255, normalized size of antiderivative = 0.93 \[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {6 (c+d x)-2 i a \text {RootSum}\left [-i b+3 i b \text {$\#$1}^2+8 a \text {$\#$1}^3-3 i b \text {$\#$1}^4+i b \text {$\#$1}^6\&,\frac {2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right )-4 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2+2 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4}{b \text {$\#$1}-4 i a \text {$\#$1}^2-2 b \text {$\#$1}^3+b \text {$\#$1}^5}\&\right ]-3 \sin (2 (c+d x))}{12 b d} \]

input
Integrate[Sin[c + d*x]^5/(a + b*Sin[c + d*x]^3),x]
 
output
(6*(c + d*x) - (2*I)*a*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b* 
#1^4 + I*b*#1^6 & , (2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] - I*Log[1 
- 2*Cos[c + d*x]*#1 + #1^2] - 4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*# 
1^2 + (2*I)*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 + 2*ArcTan[Sin[c + d*x] 
/(Cos[c + d*x] - #1)]*#1^4 - I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4)/(b* 
#1 - (4*I)*a*#1^2 - 2*b*#1^3 + b*#1^5) & ] - 3*Sin[2*(c + d*x)])/(12*b*d)
 
3.2.83.3 Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3699, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^5}{a+b \sin (c+d x)^3}dx\)

\(\Big \downarrow \) 3699

\(\displaystyle \int \left (\frac {\sin ^2(c+d x)}{b}-\frac {a \sin ^2(c+d x)}{b \left (a+b \sin ^3(c+d x)\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a \arctan \left (\frac {\sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt {a^{2/3}-b^{2/3}}}\right )}{3 b^{5/3} d \sqrt {a^{2/3}-b^{2/3}}}+\frac {2 a \text {arctanh}\left (\frac {\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^{2/3}-(-1)^{2/3} a^{2/3}}}\right )}{3 b^{5/3} d \sqrt {b^{2/3}-(-1)^{2/3} a^{2/3}}}+\frac {2 a \text {arctanh}\left (\frac {(-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}\right )}{3 b^{5/3} d \sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}-\frac {\sin (c+d x) \cos (c+d x)}{2 b d}+\frac {x}{2 b}\)

input
Int[Sin[c + d*x]^5/(a + b*Sin[c + d*x]^3),x]
 
output
x/(2*b) - (2*a*ArcTan[(b^(1/3) + a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) - 
b^(2/3)]])/(3*Sqrt[a^(2/3) - b^(2/3)]*b^(5/3)*d) + (2*a*ArcTanh[(b^(1/3) - 
 (-1)^(1/3)*a^(1/3)*Tan[(c + d*x)/2])/Sqrt[-((-1)^(2/3)*a^(2/3)) + b^(2/3) 
]])/(3*Sqrt[-((-1)^(2/3)*a^(2/3)) + b^(2/3)]*b^(5/3)*d) + (2*a*ArcTanh[(b^ 
(1/3) + (-1)^(2/3)*a^(1/3)*Tan[(c + d*x)/2])/Sqrt[(-1)^(1/3)*a^(2/3) + b^( 
2/3)]])/(3*Sqrt[(-1)^(1/3)*a^(2/3) + b^(2/3)]*b^(5/3)*d) - (Cos[c + d*x]*S 
in[c + d*x])/(2*b*d)
 

3.2.83.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3699
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_.), x_Symbol] :> Int[ExpandTrig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n) 
^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4] || Gt 
Q[p, 0] || (EqQ[p, -1] && IntegerQ[n]))
 
3.2.83.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.30 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.52

method result size
derivativedivides \(\frac {\frac {\frac {8 \left (\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}-\frac {4 a \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 b}}{d}\) \(141\)
default \(\frac {\frac {\frac {8 \left (\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}-\frac {4 a \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 b}}{d}\) \(141\)
risch \(\frac {x}{2 b}-\frac {i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (729 a^{2} b^{10} d^{6}-729 b^{12} d^{6}\right ) \textit {\_Z}^{6}-248832 a^{2} b^{8} d^{4} \textit {\_Z}^{4}-28311552 a^{4} b^{4} d^{2} \textit {\_Z}^{2}-1073741824 a^{6}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\left (\frac {243 i d^{5} b^{8}}{33554432 a^{3}}-\frac {243 i d^{5} b^{10}}{33554432 a^{5}}\right ) \textit {\_R}^{5}+\left (-\frac {81 i d^{4} b^{7}}{1048576 a^{3}}+\frac {81 i d^{4} b^{9}}{1048576 a^{5}}\right ) \textit {\_R}^{4}-\frac {81 i d^{3} b^{6} \textit {\_R}^{3}}{32768 a^{3}}+\left (\frac {9 i d^{2} b^{3}}{1024 a}+\frac {9 i d^{2} b^{5}}{512 a^{3}}\right ) \textit {\_R}^{2}-\frac {9 i d \,b^{2} \textit {\_R}}{32 a}+\frac {i b}{a}\right )\right )}{32}-\frac {\sin \left (2 d x +2 c \right )}{4 d b}\) \(223\)

input
int(sin(d*x+c)^5/(a+b*sin(d*x+c)^3),x,method=_RETURNVERBOSE)
 
output
1/d*(8/b*((1/8*tan(1/2*d*x+1/2*c)^3-1/8*tan(1/2*d*x+1/2*c))/(1+tan(1/2*d*x 
+1/2*c)^2)^2+1/8*arctan(tan(1/2*d*x+1/2*c)))-4/3/b*a*sum(_R^2/(_R^5*a+2*_R 
^3*a+4*_R^2*b+_R*a)*ln(tan(1/2*d*x+1/2*c)-_R),_R=RootOf(_Z^6*a+3*_Z^4*a+8* 
_Z^3*b+3*_Z^2*a+a)))
 
3.2.83.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.28 (sec) , antiderivative size = 29175, normalized size of antiderivative = 106.87 \[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\text {Too large to display} \]

input
integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="fricas")
 
output
Too large to include
 
3.2.83.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\text {Timed out} \]

input
integrate(sin(d*x+c)**5/(a+b*sin(d*x+c)**3),x)
 
output
Timed out
 
3.2.83.7 Maxima [F]

\[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{5}}{b \sin \left (d x + c\right )^{3} + a} \,d x } \]

input
integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="maxima")
 
output
-1/4*(4*b*d*integrate(2*(16*a^2*cos(3*d*x + 3*c)^2 + 16*a^2*sin(3*d*x + 3* 
c)^2 + 3*a*b*cos(d*x + c)*sin(2*d*x + 2*c) - 3*a*b*cos(2*d*x + 2*c)*sin(d* 
x + c) + a*b*sin(d*x + c) - (a*b*sin(5*d*x + 5*c) - 2*a*b*sin(3*d*x + 3*c) 
 + a*b*sin(d*x + c))*cos(6*d*x + 6*c) - (8*a^2*cos(3*d*x + 3*c) + 3*a*b*si 
n(4*d*x + 4*c) - 3*a*b*sin(2*d*x + 2*c))*cos(5*d*x + 5*c) - 3*(2*a*b*sin(3 
*d*x + 3*c) - a*b*sin(d*x + c))*cos(4*d*x + 4*c) - 2*(4*a^2*cos(d*x + c) + 
 3*a*b*sin(2*d*x + 2*c))*cos(3*d*x + 3*c) + (a*b*cos(5*d*x + 5*c) - 2*a*b* 
cos(3*d*x + 3*c) + a*b*cos(d*x + c))*sin(6*d*x + 6*c) + (3*a*b*cos(4*d*x + 
 4*c) - 3*a*b*cos(2*d*x + 2*c) - 8*a^2*sin(3*d*x + 3*c) + a*b)*sin(5*d*x + 
 5*c) + 3*(2*a*b*cos(3*d*x + 3*c) - a*b*cos(d*x + c))*sin(4*d*x + 4*c) + 2 
*(3*a*b*cos(2*d*x + 2*c) - 4*a^2*sin(d*x + c) - a*b)*sin(3*d*x + 3*c))/(b^ 
3*cos(6*d*x + 6*c)^2 + 9*b^3*cos(4*d*x + 4*c)^2 + 64*a^2*b*cos(3*d*x + 3*c 
)^2 + 9*b^3*cos(2*d*x + 2*c)^2 + b^3*sin(6*d*x + 6*c)^2 + 9*b^3*sin(4*d*x 
+ 4*c)^2 + 64*a^2*b*sin(3*d*x + 3*c)^2 - 48*a*b^2*cos(3*d*x + 3*c)*sin(2*d 
*x + 2*c) + 9*b^3*sin(2*d*x + 2*c)^2 - 6*b^3*cos(2*d*x + 2*c) + b^3 - 2*(3 
*b^3*cos(4*d*x + 4*c) - 3*b^3*cos(2*d*x + 2*c) - 8*a*b^2*sin(3*d*x + 3*c) 
+ b^3)*cos(6*d*x + 6*c) - 6*(3*b^3*cos(2*d*x + 2*c) + 8*a*b^2*sin(3*d*x + 
3*c) - b^3)*cos(4*d*x + 4*c) - 2*(8*a*b^2*cos(3*d*x + 3*c) + 3*b^3*sin(4*d 
*x + 4*c) - 3*b^3*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 6*(8*a*b^2*cos(3*d* 
x + 3*c) - 3*b^3*sin(2*d*x + 2*c))*sin(4*d*x + 4*c) + 16*(3*a*b^2*cos(2...
 
3.2.83.8 Giac [F]

\[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{5}}{b \sin \left (d x + c\right )^{3} + a} \,d x } \]

input
integrate(sin(d*x+c)^5/(a+b*sin(d*x+c)^3),x, algorithm="giac")
 
output
sage0*x
 
3.2.83.9 Mupad [B] (verification not implemented)

Time = 14.51 (sec) , antiderivative size = 1962, normalized size of antiderivative = 7.19 \[ \int \frac {\sin ^5(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\text {Too large to display} \]

input
int(sin(c + d*x)^5/(a + b*sin(c + d*x)^3),x)
 
output
tan(c/2 + (d*x)/2)^3/(b*d + 2*b*d*tan(c/2 + (d*x)/2)^2 + b*d*tan(c/2 + (d* 
x)/2)^4) - tan(c/2 + (d*x)/2)/(b*d + 2*b*d*tan(c/2 + (d*x)/2)^2 + b*d*tan( 
c/2 + (d*x)/2)^4) + symsum(log((134217728*a^9*b^2 - 16777216*a^11 - 402653 
184*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^ 
2 + a^6, z, k)*a^8*b^4 + 50331648*a^10*b*tan(c/2 + (d*x)/2) - 2415919104*r 
oot(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a 
^6, z, k)^2*a^7*b^6 + 914358272*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243 
*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a^6, z, k)^2*a^9*b^4 + 7247757312*root(729 
*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a^6, z, 
k)^3*a^6*b^8 - 478150656*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^ 
8*z^4 - 27*a^4*b^4*z^2 + a^6, z, k)^3*a^8*b^6 + 10871635968*root(729*a^2*b 
^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a^6, z, k)^4*a 
^5*b^10 - 21214789632*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z 
^4 - 27*a^4*b^4*z^2 + a^6, z, k)^4*a^7*b^8 - 301989888*root(729*a^2*b^10*z 
^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a^6, z, k)^4*a^9*b^ 
6 - 32614907904*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 2 
7*a^4*b^4*z^2 + a^6, z, k)^5*a^4*b^12 + 59567505408*root(729*a^2*b^10*z^6 
- 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a^4*b^4*z^2 + a^6, z, k)^5*a^6*b^10 
+ 4529848320*root(729*a^2*b^10*z^6 - 729*b^12*z^6 + 243*a^2*b^8*z^4 - 27*a 
^4*b^4*z^2 + a^6, z, k)^5*a^8*b^8 + 55717134336*root(729*a^2*b^10*z^6 -...